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Electrolyses of aryldiazonium tetrafluoroborates in CS2/EtOH and Bu4NClO4, as the solvent-supporting
electrolyte system, led to the corresponding diaryl disulfides in good yields.
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Table 1
Obtained yields of diaryl disulfides 2

Ar N2
+ -

+  CS2 +  N2
cathodic
reduction

BF4 Ar-S-S-Ar

1 2

Ar: Yield of 2 (%) Mp (�C)

a: C6H5 61 61–63 [lit16: 61–62]
b: 4-MeO–C6H4 65 44–45 [lit17: 44–45]
c: 4-Et–C6H4 73 22–24 [lit18: 23.4–24.3]
d: 2-Me–C6H4 82 36–38 [lit19: 36]
e: 3-Me–C6H4 72 43–45 [lt20: 44–45]
f: 4-Cl–C6H4 78 72–73 [lit21: 72]
g: 4-Br–C6H4 96 94–95 [lit22: 94–95]
Diaryl disulfides are important intermediates in various organic
transformations.1,2 These compounds can be employed in the prep-
aration of 4-arylthio-5-pyrazolone magenta photographic cou-
plers.3 Diphenyl disulfide as a devulcanization agent increases
the effectivity during thermochemical devulcanization.4 Hydrothi-
olation of terminal alkynes with diaryl disulfides has been
developed.5

The anodic oxidation of diphenyl disulfides allows the forma-
tion of PhS+ capable of in situ reaction with a large palette of
nucleophiles.6

There are many reports involving the synthesis of diaryl disul-
fides;7–9 however, most of these methods require unusual sub-
strates and relatively harsh reaction conditions. More recently, a
selective reduction of arenesulfonyl chlorides promoted by samar-
ium metal in DMF to the corresponding disulfides has been
published.10

The conversion of arylthiols to diaryl disulfides has been per-
formed by different oxidative procedures, from electrochemistry11

to the oxidation with 1,3-dibromo-5,5-dimethylhydantoin12 or
using n-butyltriphenylphosphonium dichromate.13

In the literature, there are two papers concerning the conver-
sion of aryldiazonium fluoroborates to diaryl disulfides. In the first
case, the diazonium salts were treated with sodium iodide in ace-
tone/carbon disulfide, 14 but the obtained yields were poor. In the
second case, the diazonium salts react with benzyltriethylammo-
nium tetrathiomolybdate.15

In this Letter we present a very easy, clean, and good-yielded
synthesis of diaryl disulfides 2 by cathodic reduction of aryldiazo-
ll rights reserved.
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nium fluoroborates 1(a–k) at the potential of their first reduction
wave (�0.5 V vs Ag/Ag+). The reaction proceeds in good yield, as
summarized in Table 1.

In previous papers, we have demonstrated that the aryldiazo-
nium salts are easily reduced to the corresponding aryl radicals
that can react with the solvent, acetonitrile, DMF, or 1,2-dichloro-
ethane to produce the dimethylaminocarbonyl, cyanomethyl, or
1,2-dichloroethyl radicals, respectively.27 Now, the electrogenerat-
ed aryl radicals react with carbon disulfide as indicated in
Scheme 1.

It is well known that the attack of a radical on a substrate
should be favored when the substrate has vacant p or d orbitals
h: 4-MeCO–C6H4 60 96–98 [lit23: 97–98]
i: 4-MeOOC–C6H4 72 126–127 [lit24: 127]
j: 2-MeS–C6H4 70 83–85 [lit25: 85]
k: 2,6-DiMe–C6H3 65 bp (�C) (3 Torr): 173 [lit26: 173–174]
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Scheme 1. Proposed pathway formation of diaryl disulfides.
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Scheme 2. Common intermediate (b) in the formation of 2j and 1,3-benzodithiole-
2-thione (3j).
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Scheme 3. Radical coupling formation of methyl 2-(methyl thio)phenyl disulfide.
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available for coordination with the radical, since a bond between
the radical and the substrate can then be formed before any bonds
are broken.28

When the diazonium salt of 2-methylthioaniline (1j) was re-
duced, together with the corresponding disulfide 2j (70% yield),
1,3-benzodithiole-2-thione29 (3j) (15%) was obtained. The forma-
tion of this product can be explained as follows: the reaction starts,
as described above, with the formation of the radical a. But this
radical is able to intramolecularly attack the sulfur atom of the
methylthio group (again the vacant d orbitals at the sulfur are
available for coordination) giving the intermediate b, which
evolves to 2j after dimerization or to 3j through a methyl radical
evolution (see Scheme 2).

The methyl radical reacts with CS2 (solvent) to afford a methyl-
thio radical which can be coupled with any of the radicals present
in the solution to give, for instance, methyl 2-(methylthio)phenyl
disulfide (Scheme 3) detected by GC–MS.30

The presented methodology31 is clearly a convenient and useful
alternative that can be generalized to the obtention of diaryl disul-
fides from anilines.
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